Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 34-40, 2017.
Article in Chinese | WPRIM | ID: wpr-230997

ABSTRACT

Gene editing is a kind of technologies that makes precise modification to the genome. It can be used to knock out/in and replace the specific DNA fragment, and make accurate gene editing on the genome level. The essence of the technique is the DNA sequence change with use of non homologous end link repair and homologous recombination repair, combined with specific DNA target recognition and endonuclease.This technology has wide range of development prospects and high application value in terms of scientific research, agriculture, medical treatment and other fields. In the field of gene therapy, gene editing technology has achieved cross-time success in cancers such as leukemia, genetic disorders such as hemophilia, thalassemia, multiple muscle nutritional disorders and retrovirus associated infectious diseases such as AIDS and other diseases. The preparation work for new experimental methods and animal models combined with gene editing technology is under rapid development and improvement. Laboratories around the world have also applied gene editing technique in prevention of malaria, organ transplantation, biological pharmaceuticals, agricultural breeding improvement, resurrection of extinct species, and other research areas. This paper summarizes the application and development status of gene editing technique in the above fields, and also preliminarily explores the potential application prospect of the technology in the field of traditional Chinese medicine, and discusses the present controversy and thoughts.

2.
China Journal of Chinese Materia Medica ; (24): 4068-4074, 2015.
Article in Chinese | WPRIM | ID: wpr-279283

ABSTRACT

To study the anti-inflammatory activity of glycyrrhizin acid, ligustrazine and puerarin. In the study, the liquichip-based high-throughput synchronous detection technique for 23 inflammatory factors, uniform design, comprehensive weight method were adopted to study the effect of different combined administration of glycyrrhizin acid, ligustrazine and puerarin in inhibiting the expression of lipopolysaccharide (LPS)-induced RAW264. 7 cells and multiple inflammatory cytokines. In the study, the uniform design table U₉ (9³) was adopted to design doses of glycyrrhizin acid, ligustrazine and puerarin. The liquichip technique was used to detect the effect of different combined administration of glycyrrhizin acid, ligustrazine and puerarin on the 23 cytokines expressed in LPS-induced mouse macrophage RAW264. 7 inflammation model. The traditional Chinese medicine component optimization software and the improved least angle regression algorithm were used to analyze the dose-effect relationship among the three components and the cytokine inhibition rate and produce the regression equation. The comprehensive weight method was applied to get the optimal dose ratio of glycyrrhizic acid, ligustrazine and puerarin with highest efficacy of 25:2:13 and verify the optimal dose ratio. The verification results were consistent with the prediction trend, indicating the accuracy of the mathematical model for predicting the experiment. The experimental results showed the multi-target and multi-level efficacies of glycyrrhizic acid, ligustrazine and puerarin and the high anti-inflammatory activity of their combined administration, which provides powerful basis for subsequent drug development.


Subject(s)
Animals , Mice , Anti-Inflammatory Agents , Pharmacology , Cytokines , Glycyrrhizic Acid , Pharmacology , Isoflavones , Pharmacology , Lipopolysaccharides , Allergy and Immunology , Macrophages , Allergy and Immunology , NF-kappa B , Genetics , Allergy and Immunology , Pyrazines , Pharmacology
3.
China Journal of Chinese Materia Medica ; (24): 3841-3845, 2014.
Article in Chinese | WPRIM | ID: wpr-310978

ABSTRACT

Glycyrrhizin acid and licorice flavonoids are the component of Glycyrrhiza uralensis Fisch root that has been used for various medicinal purposes in traditional oriental medicine for thousands of years. Macrophages as a principal component of immune system play an important role in the initiation, modulation and final activation of immune response against pathogens. In the present study, glycyrrhizin acid and licorice flavonoids was investigated the anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophage cell line of RAW264.7. Well-grown RAW264.7 cells were collected and randomly divided into the blank control group, the LPS(1 mg x L(-1)) group, the dexamethasone (5 mg x L(-1)) with LPS group, the glycyrrhizin acid (400, 80, 16 mg x L(-1)) with LPS group and the licorice flavonoids (200, 40, 8 mg x L(-1)) with LPS group. RAW264.7 cells were cultured in 24-well plates, pre-incubated for 4 h with different concentrations of dexamethasone, glycyrrhizin acid, or licorice flavonoids. Then cells were stimulated for 20 h with LPS. The supernatant of culture medium was collected from each well and determinated the concentrations of cytokines by means of BioPlex mouse cytokines assay. Compared with the control group, the LPS group could significantly induced relatively high levels of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor( GM-CSF), macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), regulated upon activation normal T cell expressed and secreted factor (RANTES), tumor necrosis factor alpha ( TNF-α), monocyte chemotactic protein 1 (MCP-1), chemokine (C-X-C motif) ligand 1 (KC), eotaxin, interleukin(IL)-1α, IL-1β, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, and IL-17 secretion (P < 0.05). The glycyrrhizin acid significantly inhibited IL-1β, IL-3, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, Eotaxin and TNF-α secreted by LPS-stimulated RAW264.7 cells (P < 0.05). The expression levels of IL-6 and Eotaxin were observably decreased in the licorice flavonoids with LPS group (P < 0.05). The data presented here suggested that the glycyrrhizin acid and licorice flavonoids modulate various cytokines secreted by macrophages and were important anti-inflammatory constituent of Licorice.


Subject(s)
Animals , Mice , Cell Line , Cytokines , Genetics , Allergy and Immunology , Flavonoids , Pharmacology , Glycyrrhiza , Chemistry , Glycyrrhizic Acid , Pharmacology , Lipopolysaccharides , Allergy and Immunology , Macrophages , Allergy and Immunology
SELECTION OF CITATIONS
SEARCH DETAIL